• random —- 生成伪随机数
    • 簿记功能
    • 整数用函数
    • 序列用函数
    • 实值分布
    • 替代生成器
    • 关于再现性的说明
    • 例子和配方

    random —- 生成伪随机数

    源码:Lib/random.py


    该模块实现了各种分布的伪随机数生成器。

    对于整数,从范围中有统一的选择。 对于序列,存在随机元素的统一选择、用于生成列表的随机排列的函数、以及用于随机抽样而无需替换的函数。

    在实数轴上,有计算均匀、正态(高斯)、对数正态、负指数、伽马和贝塔分布的函数。 为了生成角度分布,可以使用 von Mises 分布。

    几乎所有模块函数都依赖于基本函数 random() ,它在半开放区间 [0.0,1.0) 内均匀生成随机浮点数。 Python 使用 Mersenne Twister 作为核心生成器。 它产生 53 位精度浮点数,周期为 2**19937-1 ,其在 C 中的底层实现既快又线程安全。 Mersenne Twister 是现存最广泛测试的随机数发生器之一。 但是,因为完全确定性,它不适用于所有目的,并且完全不适合加密目的。

    这个模块提供的函数实际上是 random.Random 类的隐藏实例的绑定方法。 你可以实例化自己的 Random 类实例以获取不共享状态的生成器。

    如果你想使用自己设计的不同基础生成器,类 Random 也可以作为子类:在这种情况下,重载 random()seed()getstate() 以及 setstate() 方法。可选地,新生成器可以提供 getrandbits() 方法——这允许 randrange() 在任意大的范围内产生选择。

    random 模块还提供 SystemRandom 类,它使用系统函数 os.urandom() 从操作系统提供的源生成随机数。

    警告

    不应将此模块的伪随机生成器用于安全目的。 有关安全性或加密用途,请参阅 secrets 模块。

    参见

    M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionallyequidistributed uniform pseudorandom number generator", ACM Transactions onModeling and Computer Simulation Vol. 8, No. 1, January pp.3—30 1998.

    Complementary-Multiply-with-Carry recipe 用于兼容的替代随机数发生器,具有长周期和相对简单的更新操作。

    簿记功能

    • random.seed(a=None, version=2)
    • 初始化随机数生成器。

    如果 a 被省略或为 None ,则使用当前系统时间。 如果操作系统提供随机源,则使用它们而不是系统时间(有关可用性的详细信息,请参阅 os.urandom() 函数)。

    如果 a 是 int 类型,则直接使用。

    对于版本2(默认的),strbytesbytearray 对象转换为 int 并使用它的所有位。

    对于版本1(用于从旧版本的Python再现随机序列),用于 strbytes 的算法生成更窄的种子范围。

    在 3.2 版更改: 已移至版本2方案,该方案使用字符串种子中的所有位。

    • random.getstate()
    • 返回捕获生成器当前内部状态的对象。 这个对象可以传递给 setstate() 来恢复状态。

    • random.setstate(state)

    • state 应该是从之前调用 getstate() 获得的,并且 setstate() 将生成器的内部状态恢复到 getstate() 被调用时的状态。

    • random.getrandbits(k)

    • 返回带有 k 位随机的Python整数。 此方法随 MersenneTwister 生成器一起提供,其他一些生成器也可以将其作为API的可选部分提供。 如果可用,getrandbits() 启用 randrange() 来处理任意大范围。

    整数用函数

    • random.randrange(stop)
    • random.randrange(start, stop[, step])
    • range(start, stop, step) 返回一个随机选择的元素。 这相当于 choice(range(start, stop, step)) ,但实际上并没有构建一个 range 对象。

    位置参数模式匹配 range() 。不应使用关键字参数,因为该函数可能以意外的方式使用它们。

    在 3.2 版更改: randrange() 在生成均匀分布的值方面更为复杂。 以前它使用了像int(random()*n)这样的形式,它可以产生稍微不均匀的分布。

    • random.randint(a, b)
    • 返回随机整数 N 满足 a <= N <= b。相当于 randrange(a, b+1)

    序列用函数

    • random.choice(seq)
    • 从非空序列 seq 返回一个随机元素。 如果 seq 为空,则引发 IndexError

    • random.choices(population, weights=None, *, cum_weights=None, k=1)

    • population中选择替换,返回大小为 k 的元素列表。 如果 population 为空,则引发 IndexError

    如果指定了 weight 序列,则根据相对权重进行选择。 或者,如果给出 cum_weights 序列,则根据累积权重(可能使用 itertools.accumulate() 计算)进行选择。 例如,相对权重[10, 5, 30, 5]相当于累积权重[10, 15, 45, 50]。 在内部,相对权重在进行选择之前会转换为累积权重,因此提供累积权重可以节省工作量。

    如果既未指定 weight 也未指定 cum_weights ,则以相等的概率进行选择。 如果提供了权重序列,则它必须与 population 序列的长度相同。 一个 TypeError 指定了 weightscum_weights

    weightscum_weights 可以使用任何与 random() 所返回的 float 值互操作的数值类型(包括整数、浮点数和分数但不包括十进制小数)。 权重假定为非负数。

    对于给定的种子,具有相等加权的 choices() 函数通常产生与重复调用 choice() 不同的序列。 choices() 使用的算法使用浮点运算来实现内部一致性和速度。 choice() 使用的算法默认为重复选择的整数运算,以避免因舍入误差引起的小偏差。

    3.6 新版功能.

    • random.shuffle(x[, random])
    • 将序列 x 随机打乱位置。

    可选参数 random 是一个0参数函数,在 [0.0, 1.0) 中返回随机浮点数;默认情况下,这是函数 random()

    要改变一个不可变的序列并返回一个新的打乱列表,请使用sample(x, k=len(x))

    请注意,即使对于小的 len(x)x 的排列总数也可以快速增长,大于大多数随机数生成器的周期。 这意味着长序列的大多数排列永远不会产生。 例如,长度为2080的序列是可以在 Mersenne Twister 随机数生成器的周期内拟合的最大序列。

    • random.sample(population, k)
    • 返回从总体序列或集合中选择的唯一元素的 k 长度列表。 用于无重复的随机抽样。

    返回包含来自总体的元素的新列表,同时保持原始总体不变。 结果列表按选择顺序排列,因此所有子切片也将是有效的随机样本。 这允许抽奖获奖者(样本)被划分为大奖和第二名获胜者(子切片)。

    总体成员不必是 hashable 或 unique 。 如果总体包含重复,则每次出现都是样本中可能的选择。

    要从一系列整数中选择样本,请使用 range() 对象作为参数。 对于从大量人群中采样,这种方法特别快速且节省空间:sample(range(10000000), k=60)

    如果样本大小大于总体大小,则引发 ValueError

    实值分布

    以下函数生成特定的实值分布。如常用数学实践中所使用的那样, 函数参数以分布方程中的相应变量命名;大多数这些方程都可以在任何统计学教材中找到。

    • random.random()
    • 返回 [0.0, 1.0) 范围内的下一个随机浮点数。

    • random.uniform(a, b)

    • 返回一个随机浮点数 N ,当 a <= ba <= N <= b ,当 b < ab <= N <= a

    取决于等式 a + (b-a) * random() 中的浮点舍入,终点 b 可以包括或不包括在该范围内。

    • random.triangular(low, high, mode)
    • 返回一个随机浮点数 N ,使得 low <= N <= high 并在这些边界之间使用指定的 modelowhigh 边界默认为零和一。 mode 参数默认为边界之间的中点,给出对称分布。

    • random.betavariate(alpha, beta)

    • Beta 分布。 参数的条件是 alpha > 0beta > 0。 返回值的范围介于 0 和 1 之间。

    • random.expovariate(lambd)

    • 指数分布。 lambd 是 1.0 除以所需的平均值,它应该是非零的。 (该参数本应命名为 “lambda” ,但这是 Python 中的保留字。)如果 lambd 为正,则返回值的范围为 0 到正无穷大;如果 lambd 为负,则返回值从负无穷大到 0。

    • random.gammavariate(alpha, beta)

    • Gamma 分布。 ( 不是 gamma 函数! ) 参数的条件是 alpha > 0beta > 0

    概率分布函数是:

    1. x ** (alpha - 1) * math.exp(-x / beta)
    2. pdf(x) = --------------------------------------
    3. math.gamma(alpha) * beta ** alpha
    • random.gauss(mu, sigma)
    • 高斯分布。 mu 是平均值,sigma 是标准差。 这比下面定义的 normalvariate() 函数略快。

    • random.lognormvariate(mu, sigma)

    • 对数正态分布。 如果你采用这个分布的自然对数,你将得到一个正态分布,平均值为 mu 和标准差为 sigmamu 可以是任何值,sigma 必须大于零。

    • random.normalvariate(mu, sigma)

    • 正态分布。 mu 是平均值,sigma 是标准差。

    • random.vonmisesvariate(mu, kappa)

    • mu 是平均角度,以弧度表示,介于0和 2pi 之间,kappa 是浓度参数,必须大于或等于零。 如果 kappa 等于零,则该分布在0到 2pi 的范围内减小到均匀的随机角度。

    • random.paretovariate(alpha)

    • 帕累托分布。 alpha 是形状参数。

    • random.weibullvariate(alpha, beta)

    • 威布尔分布。 alpha 是比例参数,beta 是形状参数。

    替代生成器

    • class random.Random([seed])
    • 。该类实现了 random 模块所用的默认伪随机数生成器。

    • class random.SystemRandom([seed])

    • 使用 os.urandom() 函数的类,用从操作系统提供的源生成随机数。 这并非适用于所有系统。 也不依赖于软件状态,序列不可重现。 因此,seed() 方法没有效果而被忽略。 getstate()setstate() 方法如果被调用则引发 NotImplementedError

    关于再现性的说明

    有时能够重现伪随机数生成器给出的序列是有用的。 通过重新使用种子值,只要多个线程没有运行,相同的序列就可以在两次不同运行之间重现。

    大多数随机模块的算法和种子函数都会在 Python 版本中发生变化,但保证两个方面不会改变:

    • 如果添加了新的播种方法,则将提供向后兼容的播种机。

    • 当兼容的播种机被赋予相同的种子时,生成器的 random() 方法将继续产生相同的序列。

    例子和配方

    基本示例:

    1. >>> random() # Random float: 0.0 <= x < 1.0
    2. 0.37444887175646646
    3.  
    4. >>> uniform(2.5, 10.0) # Random float: 2.5 <= x < 10.0
    5. 3.1800146073117523
    6.  
    7. >>> expovariate(1 / 5) # Interval between arrivals averaging 5 seconds
    8. 5.148957571865031
    9.  
    10. >>> randrange(10) # Integer from 0 to 9 inclusive
    11. 7
    12.  
    13. >>> randrange(0, 101, 2) # Even integer from 0 to 100 inclusive
    14. 26
    15.  
    16. >>> choice(['win', 'lose', 'draw']) # Single random element from a sequence
    17. 'draw'
    18.  
    19. >>> deck = 'ace two three four'.split()
    20. >>> shuffle(deck) # Shuffle a list
    21. >>> deck
    22. ['four', 'two', 'ace', 'three']
    23.  
    24. >>> sample([10, 20, 30, 40, 50], k=4) # Four samples without replacement
    25. [40, 10, 50, 30]

    模拟:

    1. >>> # Six roulette wheel spins (weighted sampling with replacement)
    2. >>> choices(['red', 'black', 'green'], [18, 18, 2], k=6)
    3. ['red', 'green', 'black', 'black', 'red', 'black']
    4.  
    5. >>> # Deal 20 cards without replacement from a deck of 52 playing cards
    6. >>> # and determine the proportion of cards with a ten-value
    7. >>> # (a ten, jack, queen, or king).
    8. >>> deck = collections.Counter(tens=16, low_cards=36)
    9. >>> seen = sample(list(deck.elements()), k=20)
    10. >>> seen.count('tens') / 20
    11. 0.15
    12.  
    13. >>> # Estimate the probability of getting 5 or more heads from 7 spins
    14. >>> # of a biased coin that settles on heads 60% of the time.
    15. >>> def trial():
    16. ... return choices('HT', cum_weights=(0.60, 1.00), k=7).count('H') >= 5
    17. ...
    18. >>> sum(trial() for i in range(10000)) / 10000
    19. 0.4169
    20.  
    21. >>> # Probability of the median of 5 samples being in middle two quartiles
    22. >>> def trial():
    23. ... return 2500 <= sorted(choices(range(10000), k=5))[2] < 7500
    24. ...
    25. >>> sum(trial() for i in range(10000)) / 10000
    26. 0.7958

    statistical bootstrapping) 使用重采样和替换来估计大小为五的样本的均值的置信区间的示例:

    1. # http://statistics.about.com/od/Applications/a/Example-Of-Bootstrapping.htm
    2. from statistics import fmean as mean
    3. from random import choices
    4.  
    5. data = 1, 2, 4, 4, 10
    6. means = sorted(mean(choices(data, k=5)) for i in range(20))
    7. print(f'The sample mean of {mean(data):.1f} has a 90% confidence '
    8. f'interval from {means[1]:.1f} to {means[-2]:.1f}')

    使用 重新采样排列测试#Permutation_tests) 来确定统计学显著性或者使用 p-值 来观察药物与安慰剂的作用之间差异的示例:

    1. # Example from "Statistics is Easy" by Dennis Shasha and Manda Wilson
    2. from statistics import fmean as mean
    3. from random import shuffle
    4.  
    5. drug = [54, 73, 53, 70, 73, 68, 52, 65, 65]
    6. placebo = [54, 51, 58, 44, 55, 52, 42, 47, 58, 46]
    7. observed_diff = mean(drug) - mean(placebo)
    8.  
    9. n = 10000
    10. count = 0
    11. combined = drug + placebo
    12. for i in range(n):
    13. shuffle(combined)
    14. new_diff = mean(combined[:len(drug)]) - mean(combined[len(drug):])
    15. count += (new_diff >= observed_diff)
    16.  
    17. print(f'{n} label reshufflings produced only {count} instances with a difference')
    18. print(f'at least as extreme as the observed difference of {observed_diff:.1f}.')
    19. print(f'The one-sided p-value of {count / n:.4f} leads us to reject the null')
    20. print(f'hypothesis that there is no difference between the drug and the placebo.')

    模拟单个服务器队列中的到达时间和服务交付:

    1. from random import expovariate, gauss
    2. from statistics import mean, median, stdev
    3.  
    4. average_arrival_interval = 5.6
    5. average_service_time = 5.0
    6. stdev_service_time = 0.5
    7.  
    8. num_waiting = 0
    9. arrivals = []
    10. starts = []
    11. arrival = service_end = 0.0
    12. for i in range(20000):
    13. if arrival <= service_end:
    14. num_waiting += 1
    15. arrival += expovariate(1.0 / average_arrival_interval)
    16. arrivals.append(arrival)
    17. else:
    18. num_waiting -= 1
    19. service_start = service_end if num_waiting else arrival
    20. service_time = gauss(average_service_time, stdev_service_time)
    21. service_end = service_start + service_time
    22. starts.append(service_start)
    23.  
    24. waits = [start - arrival for arrival, start in zip(arrivals, starts)]
    25. print(f'Mean wait: {mean(waits):.1f}. Stdev wait: {stdev(waits):.1f}.')
    26. print(f'Median wait: {median(waits):.1f}. Max wait: {max(waits):.1f}.')

    参见

    Statistics for HackersJake Vanderplas 撰写的视频教程,使用一些基本概念进行统计分析,包括模拟、抽样、改组和交叉验证。

    Economics SimulationPeter Norvig 编写的市场模拟,显示了该模块提供的许多工具和分布的有效使用(高斯、均匀、样本、beta变量、选择、三角和随机范围等)。

    A Concrete Introduction to Probability (using Python)Peter Norvig 撰写的教程,涵盖了概率论基础知识,如何编写模拟,以及如何使用 Python 进行数据分析。